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Discussion

Comments on “On estimating the Weibull
modulus for a brittle material”

It has come to our attention that Equation 3 of
the paper by Trustrum and Jayatilaka [1], which
is supposed to be valid for tensile strength under
uniform loading, is employed by them for analysing
the data of a set of experimentally observed
flexural strengths, tested in three-point bending. In
fact, by using the Weibull function of specific
risk of fracture:
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where ¢ is the tensile strength, 64, 0, and m are
the Weibull constants, the correct expression for
three-point bending, after a paper [2] of one of
the authors, was shown to be
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where F(o) is the cummulative probability of
failure of a rectangular bar of length L, height
A and width b subjected to a maximum stress of
o = 3/2 PL/bh? undergone by the body at fracture
under a load, P, at the centre and 7 is an auxiliary
variable under the symbol of the integral. Obviously
Equation 2 of the present work is difficult to use
in order to evaluate 04, 0; and m. However if the
analytical form of ¢(0) is not specified, an integral
equation which when solved allows ¢(0) to be
expressed as a function of F(o), was established
and solved in [2], to give
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When Equation 2 is substituted into Equation 3,
the Weibull function is obtained, which is also a
proof that Equation 3 is valid.
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The difference between the Trustrum and
Jayatilaka treatment, with that of the present
work can be readily evaluated. In fact, it is easy to
show that Equation 3 of [1] excepting a constant,
can be written in the form
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Rearranging Equation 2, with the aim of
comparing it with Equation 4 yields
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In Equation 4 and 5 the subscripts T and K refer
to the work of Trustrum and Jayatilaka [1] and
the present authors respectively. By transforming
Equation 4 and 5 conveniently, in order to
perform a Weibull plot, one obtains
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The right-hand side terms of Equation 6 and 7
have the same limiting values at infinity, that is,
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and also in o/c; =1, because both terms of
expression 8 vanish at this value. Nevertheless for
1 <o/oy <o, and m = 5, the differences between
the left-hand side terms of Equation 6 and 7 differ
by a factor of two or even more, as it was con-
cluded from a Weibull plot not shown here. Thus,
the Trustrum and Jayatilaka treatment is not
satisfactory for three-point bending, but can be
used in tensile strength under uniform loading.

References

1. K.TRUSTRUM and A.DES.JAYATILAKA, J.
Mater. Sci. 14 (1979) 1080.
2. P.KITTL, Res. Mechanica 1 (1980) 161.

Received 24 June
and accepted 30 July 1981

P. KITTL
0. GUNTHER

Instituto de Investigaciones

v Ensayes de Materiales (IDIEM),

Facultad de Ciencias Fisicas y Matematicas,
Universidad de Chile,

Casilla 1420,

Santiago, Chile

923



